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A quick introduction

Basic idea

A motivation to study various encodings of graphs by words is the
hope, for a given (difficult) problem on graphs, to be able to find
a suitable encoding that would allow to translate the problem on
graphs to an easier problem on words, and solve it. Such an encoding
does not have to be optimal in size.

Example: Prüfer codes (sequences) to encode labelled trees (1918)

Provides a proof of Cayley’s formula (nn−2) to enumerate labelled
trees on n vertices.

1 2 3

4 5 6

Remove the leaf with the smallest label
and record its neighbour:
4445 (the last neighbour does not need
to be recorded)
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Overview of the talk

Word-representable graphs

Some history + motivation + literature + definitions

Key results (incl. characterisation via certain orientations)

Impact of computer experiments to the theory

Earlier computer experiments + available software

Enumeration

Finding forbidden subgraphs

Triangulations of grid-covered cylinder graphs
Split graphs
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Some History
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Some History

Major contributors to the theory of word-representable graphs

Magnus M. Halldorsson Artem Pyatkin

Other contributors: Özgür Akgün, Posper Akrobotu, Bas Broere, Herman
Chen, Gi-Sang Cheon, Andrew Collins, Jessica Enright, Alice Gao, Ian
Gent, Marc Glen, Christopher Jefferson, Miles Jones, Jinha Kim, Minki
Kim, Sergey Kitaev, Alexander Konovalov, Vincent Limouzy, Steven
Linton, Vadim Lozin, Yelena Mandelshtam, Zuzana Masárová, Jeff
Remmel, Akira Saito, Pavel Salimov, Chris Severs, Brian Sun, Henning
Úlfarsson, Hans Zantema, Philip Zhang, and several others.

S. Kitaev (University of Strathclyde) Computer experiments for w.-r. graphs 25th October, 2018 4 / 39



Some History

Major contributors to the theory of word-representable graphs

Magnus M. Halldorsson Artem Pyatkin
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Motivation

Study of the Perkins semigroup (original motivation) — Algebra

Generalisation of several classes of graphs — Graph Theory

Relies on various properties of words — Combinatorics on Words

Solving algorithmic questions — Computer Science

Solving certain scheduling problems — Operations Research

Beautiful mathematics — Mathematics

Just fun — Human Science
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Relations between graph classes
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Literature

The best way to learn about the subject
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Basic definitions

Alternating letters in a word

In the word 23125413241362, the letters 2 and 3 alternate because
removing all other letters we obtain 2323232 where 2 and 3 come in
alternating order.

Also, 1 and 3 do not alternate because removing all other letters we
obtain 311313 and the factor 11 breaks the alternating order.

Note that removing all letters but 5 and 6 we obtain 56 showing that
the letters 5 and 6 alternate (by definition).
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Basic definitions

All graphs considered by us are simple (no loops, no multiple edges).

Word-representable graph

A graph G = (V ,E ) is word-representable if there exists a word w
over the alphabet V such that letters x and y , x 6= y , alternate in
w if and only if xy ∈ E . (w must contain each letter in V )

Word-representant

w is a word-representant. We say that w represents G .

Remark

We deal with unlabelled graphs. However, to apply the definition,
we need to label graphs. Any labelling of a graph is equivalent to
any other labelling because letters in w can always be renamed.

S. Kitaev (University of Strathclyde) Computer experiments for w.-r. graphs 25th October, 2018 10 / 39



Basic definitions

All graphs considered by us are simple (no loops, no multiple edges).

Word-representable graph

A graph G = (V ,E ) is word-representable if there exists a word w
over the alphabet V such that letters x and y , x 6= y , alternate in
w if and only if xy ∈ E . (w must contain each letter in V )

Word-representant

w is a word-representant. We say that w represents G .

Remark

We deal with unlabelled graphs. However, to apply the definition,
we need to label graphs. Any labelling of a graph is equivalent to
any other labelling because letters in w can always be renamed.

S. Kitaev (University of Strathclyde) Computer experiments for w.-r. graphs 25th October, 2018 10 / 39



Basic definitions

All graphs considered by us are simple (no loops, no multiple edges).

Word-representable graph

A graph G = (V ,E ) is word-representable if there exists a word w
over the alphabet V such that letters x and y , x 6= y , alternate in
w if and only if xy ∈ E . (w must contain each letter in V )

Word-representant

w is a word-representant. We say that w represents G .

Remark

We deal with unlabelled graphs. However, to apply the definition,
we need to label graphs. Any labelling of a graph is equivalent to
any other labelling because letters in w can always be renamed.

S. Kitaev (University of Strathclyde) Computer experiments for w.-r. graphs 25th October, 2018 10 / 39



Basic definitions

Word-representable graph

A graph G = (V ,E ) is word-representable if there exists a word w
over the alphabet V such that letters x and y , x 6= y , alternate in
w if and only if xy ∈ E . (w must contain each letter in V )

Remark

The class of word-representable graphs is hereditary. That is,
removing a vertex v in a word-representable graph G results in a
word-representable graph G ′. Indeed, if w represents G then w with
v removed represents G ′.
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Basic definitions

Word-representable graph

A graph G = (V ,E ) is word-representable if there exists a word w
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Example

is word-representable.The graph

3

2 4

1

can be represented by 1213423.Indeed,
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w if and only if xy ∈ E . (w must contain each letter in V )

Example: representing complete graphs and empty graphs

3

2 4

1

can be represented by 1234 or 12341234.

or by any permutation of {1, 2, 3, 4}.
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2 4

1
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k-representability and graph’s representation number

Uniform word

k-uniform word = each letter occurs k times
243321442311 is a 3-uniform word
23154 is a 1-uniform word or permutation

k-representable graph

A graph is k-representable if there exists a k-uniform word represent-
ing it.

Theorem (SK, Pyatkin; 2008)

A graph is word-representable iff it is k-representable for some k .

Theorem (SK, Pyatkin; 2008)

k-representability implies (k + 1)-representability.
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k-representability and graph’s representation number

Graph’s representation number

Graph’s representation number is the least k such that the graph
is k-representable. This notion is well-defined for word-representable
graphs. For non-word-representable graphs, we let k =∞.

Notation

R(G ) denotes G ’s representation number & Rk = {G : R(G ) = k}

Observation

R1 = {G : G is a complete graph}

Theorem (Halldórsson, SK, Pyatkin; 2011)

R1 ∪R2 = {G : G is a circle graph}

S. Kitaev (University of Strathclyde) Computer experiments for w.-r. graphs 25th October, 2018 15 / 39



k-representability and graph’s representation number

Graph’s representation number

Graph’s representation number is the least k such that the graph
is k-representable. This notion is well-defined for word-representable
graphs. For non-word-representable graphs, we let k =∞.

Notation

R(G ) denotes G ’s representation number & Rk = {G : R(G ) = k}

Observation

R1 = {G : G is a complete graph}
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Theorem (Halldórsson, SK, Pyatkin; 2011)

R1 ∪R2 = {G : G is a circle graph}

S. Kitaev (University of Strathclyde) Computer experiments for w.-r. graphs 25th October, 2018 15 / 39



Graphs with representation number 3

No characterization is known, but a number of interesting results are
obtained. Prisms are just one example.

Prisms

Theorem (SK, Pyatkin; 2008)

Every prism is 3-representable.

Theorem (SK; 2013)

None of the prisms is 2-representable.
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Comparability graphs

Transitive orientation

An orientation of a graph is transitive if presence of edges u → v
and v → z implies presence of the edge u → z .

Comparability graph

A non-oriented graph is a comparability graph if it admits a transitive
orientation.

Theorem (SK, Pyatkin; 2008)

G is word-representable ⇒ the neighbourhood of each vertex is a
comparability graph.

The smallest non-word-representable graph is the wheel W5 =
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Converse to the last theorem is not true

Theorem (Halldórsson, SK, Pyatkin; 2010)

G is word-representable 6⇐ the neighbourhood of each vertex is
permutationally representable (is a comparability graph).

Minimal counterexamples

co-(T2)
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Semi-transitive orientations

Shortcut

A shortcut is an oriented graph that

is acyclic (that it, there are no directed cycles);

has at least 4 vertices;

has exactly one source (no edges coming in), exactly one
sink (no edges coming out), and a directed path from the
source to the sink that goes through every vertex in the graph;

has an edge connecting the source to the sink;

is not transitive (that it, there exist vertices u, v and z such
that u → v and v → z are edges, but there is no edge u → z).
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Semi-transitive orientations

Example of a shortcut

The part of the graph in red shows non-transitivity. There are two
other violations of transitivity.

The blue edge, from the source to the sink, justifies the name “short-
cut” for this type of graphs. Indeed, instead of going through the
longest directed path from the source to the sink, we can shortcut
it by going directly through the single edge. The blue edge is called
shortcutting edge.
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Semi-transitive orientations

Semi-transitive orientation

An orientation of a graph is semi-transitive if it is

acyclic, and

shortcut-free.

Checking if a given acyclic orientation is semi-transitive
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A key result in the theory of word-representable graphs

Theorem (Halldórsson, Kitaev, Pyatkin; 2015)

A graph G is word-representable iff G admits a semi-transitive orientation.

Proof.

“⇐” Rather complicated and is omitted. An algorithm was created to
turn a semi-transitive orientation of a graph into a word-representant.

“⇒” Proof idea: Given a word, say, w = 2421341, orient the graph
represented by w by letting x → y be an edge if the leftmost x is to the
left of the leftmost y in w , to obtain a semi-transitive orientation:

1 3

4 2
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The shortest length of a word-representant

An upper bound on the length of a word-representant

Any complete graph is 1-representable.

Theorem (Halldórsson, Kitaev, Pyatkin; 2015)

Each non-complete word-representable graph G is 2(n − κ(G ))-
representable, where κ(G ) is the size of the maximum clique in G .

A corollary to the last theorem

The recognition problem of word-representability is in NP.

Theorem (Limouzy; 2014)

It is an NP-complete problem to recognize whether a given graph is
word-representable.
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3-colorable graphs

Theorem (Halldórsson, Kitaev, Pyatkin; 2015)

Any 3-colorable graph is word-representable.

Proof.

Coloring a 3-colorable graph in three colors Red, Green and Blue, and
orienting the edges as Red → Green → Blue, we obtain a semi-transitive
orientation. Indeed, obviously there are no cycles, and because the
longest directed path involves only three vertices, there are no shortcuts.
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Earlier impact of computer experiments

Representation of graphs of up to 6 vertices

Artem Pyatkin has represented all graphs on up to 6 vertices but

W5 = which was then proved to be non-word-representable.

Petersen’s graph – a turned down conjecture

1

2

34

5
6

7

89

10

Two non-equivalent 3-representations (by
Alexander Konovalov and Steven Linton):
1387296(10)7493541283(10)7685(10)194562
134(10)58679(10)273412835(10)6819726495

Theorem (Halldórsson, SK, Pyatkin; 2010)

Petersen graph is not 2-representable.
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All 25 non-word-representable graphs on 7 vertices

The following picture was created by Herman Chen. It was useful in (i)
finding various counter-examples (ii) a generalization of word-
representable graphs (iii) to support a conjecture saying that the line
graph of a non-word-representable graph is always non-word-representable.

1

Figure 1: 25 non-isomorphic non-word-representable graphs on 7 vertices
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Software by Marc Glen to study word-representable graphs

Available at
https://personal.cis.strath.ac.uk/sergey.kitaev/word-representable-graphs.html
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Software by Hans Zantema for word-representable graphs

Available at http://www.win.tue.nl/ hzantema/reprnr.html
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Distribution of k-representable graphs

Hans Zantema produced the following results:

# of # of conn. representation number
vertices graphs 1 2 3 4 > 4

3 2 1 1 0 0 0

4 6 1 5 0 0 0

5 21 1 20 0 0 0

6 112 1 109 1 0 1

7 853 1 788 39 0 25

8 11,117 1 8335 1852 0 929

9 261,080 1 117,282 88,838 2 54,957

One of the major surprises was the 2 in the last row – our prediction was 1
in that place! This made us to question our conjecture that a particular
graph on 2n + 1 vertices requires a longest word-representant.
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The 39 graphs on 7 vertices with representation number 3

Hans Zantema produced the following picture.
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Enumeration of non-word-representable graphs

Ozgur Akgun and Ian Gent produced the following results:

# of conn. All non-word-representable graphs
graphs Total % Time Min. Non-Min.

6 112 1 0.89% 3.0s 1 0

7 853 25 2.93% 4.0s 10 15

8 11,117 929 8.36% 26s 47 882

9 261,080 54,957 21.05% 29m 179 54,778

10 11,716,571 4,880,093 41.65% 74h - -

11 1,006,690,565 650,856,040 64.65% 1,100d - -
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Word-representation of split graphs

Split graph

A split graph is a graph in which the vertices can be partitioned into
a clique and an independent set.

Examples of split graphs

T1 = T2 =

Notation

A split graph on n vertices is denoted by Sn = (En−m,Km), where
Km is a maximal clique, that is, vertices in the independent set
En−m are of degree at most m − 1.
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Useful assumptions (for split graphs)

When studying word-representability of any graph G , we can assume that

each vertex in G is of degree at least 2;

no two vertices in G have the same set of neighbours.

For a split graph Sn, we can assume that

a maximal clique in Sn is of size ≥ 4 (otherwise Sn is 3-colorable and
thus is word-representable);

[Never used so far!] Sn contains at least one of

M1 =

M2 =
M3 =

because otherwise Sn is a comparability graph by Golumbic’s 1980
theorem and thus is word-representable.
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Minimal non-word-representable split graphs

T1 = T2 =

T3 = =

T4 =
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More minimal non-word-representable split graphs

T5 = T6 =

T7 = T8 =

T9 =
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Three classification results for split graphs

Computer was not used to prove the following theorem.

Theorem (Kitaev, Long, Ma, Wu; 2017)

Let m ≥ 1 and Sn = (En−m,Km) be a split graph. Also, let the degree of
any vertex in En−m be at most 2. Then Sn is word-representable iff Sn
does not contain the graph T2 and A` as induced subgraphs.

Essentially, computer was not used to prove the following theorem.

Theorem (Kitaev, Long, Ma, Wu; 2017)

Sn = (En−4,K4) is w.-r. iff it does not contain T1–T4 as ind. subgraphs.

There is only a computer-based proof of the following theorem that still
uses some theorems:

Theorem (Chen, Kitaev, Saito; 2018+)

Sn = (En−5,K5) is w.-r. iff Sn does not contain T1–T9 as ind. subgraphs.
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Stuff that should be included into this talk, but was not ...

k-semi-transitive orientations; it was shown by computer that
3-semi-transitively orientable, but non-semi-transitively
orientable graphs on 9 vertices exist;

using computer to study 12-representable graphs.
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